HORNELLIELLA MACROPORA (SHIPLEY \& HORNELL, 1906) COMB. NOV. (CESTODA: TRYPANORHYNCHA) FROM AUSTRALIAN ELASMOBRANCH FISHES AND A RE-ASSESSMENT OF THE FAMILY HORNELLIELLIDAE

by R. A. CAmpbell* \& I. Beveridget

Summary
Campeell, R. A \& Beverideal, 1. (1987) Hornelliella macropura (Shipley \& Hornell, 1906) comb. nov; (Cestods: Tryponorbyncha) from Australian elasmobranch fishes and a re-assessment of the family Hornellellidac. Truns. R. Soc. S, Aust. 111(4), 195-200), 30 November, 1987.

Hornelliella macropora (Shipley \& Hornell, 1906) comb. nov. is redeseribed from the elasmobranchs Slegostoma foscielum and Chiloscyllium punctatum from northern Queensland. H. annandulei (Hornell, 1912) is considered a synonym of H. macropora; The armature is described for the first time and consists of a unique poeciloacanthous type in which latge, allernating pairs of hollow hooks form a double chainette on the external sutface of the tentacle. The presence of an hermaphroditic vesicle is confirmed and illustrations are provided. The family Hornelliellidac Vamagut, 1954 is considered justified, based on a combination of the unique features of the armature and the genitalia, and is re-definod.

Key Words: Cestoda. Trypanorhyncha, Hornelliellidac, Hornelliella, elasmobmanchs.

Introduction

Yamaguti (1954) erected the genus Hornelliella and the family Hornelliellidae for a single species of trypanothynch cestode, Tefrarhynchus amnandelei Hornell, 1912 described from a shark, Slegostoma fasciatum (Hermann, 1783) (syn. S. tigrinum (Gmelin)), from the Bay of Bengal. The new family was distinguished primanily by the presence of a unique structure within the reproductive system, termed an hermaphroditic vesicle, which was not illustrated, and was supported by several minor characters including the distribution of testes and vitellaria. In trypanorhynchan systematics, the tentacular armature is of prime importance (Dollfus 1942), but neither Hornell (1912) nor Yamaguti (1954) described the armature in sufficient detail to determine the taxonomic position of the family. In addition, Southwell (1929) synonymised T. amandalie with Tentactuaria macropora (Shipley \& Hornell, 1906), a fact which Yamaguti (1954) either overlooked or ignored. Cestodes oit this family have nor been reported previously from the Australian region, however, specimens bave recently been collected from Stegostoma fasciatum and Chboscyltium punctatum off the coast of Queensland. In this paper the species is described in full for the first time, the taxonomic position of the family Hornelliellidae reassessed, and the famify re-delined.

[^0]
Materials and Methods

Cestodes from the spiral valves of sharks were fixed in 10% formalin, and were stained with celestine blue, dehydrated in ethanol, cleared in clove oil and mounted in balsam. Tentacles were dissected free and cleared in glycerol. Measurements are given in micrometres, unless otherwise stated, as the range of 10 measurements followed, in parentheses, by the mean.
Terminology for trypanorhynch morphology follows Dollfus (1942). Specimens have been deposited in the Australian Helminth Collection (AHC) of the South Australian Museum, Adelaide. Southwell's specimens of Tentacularia macropora were borrowed from the British Muscum (Natural History), London (BMNH).

Hornelliella macropora (Shipley \& Hornell, 1906)
comb. nov,
FIGS 1-11
Tetrarhynchus amandatei Hornell, 1912
Hornelliella unandalei (Hornefi, 1912) Yamaguti, 1954

Tetrarhynchus macroporus Shipley \& Hornell, 1906

Tentacularia macropon (Shipley \& Hornell. 1906) Southwell, 1929

Description: Cestodes up to 76 mm long, with up to 63 scements in gravid strobilae. Scolex acraspedole, $7.25-11.2(8.62) \mathrm{mm}$ long, maximumwidth at bulbs $0,85-1,02(0.94) \mathrm{mm}$. Two bothridias, t.7-2.6 (2.09) mm by $1.36,1.38 \mathrm{~mm}_{3}$ aval or slighty dumb-bell shaped, notched postcriorly, rim broad, median ridge within each bothridial savity. Pars

Figs 1-6. Hornelliella matropora (Shipley \& Hornell) from Slegostama fasciafum. 1, scolex; 2, mature segment; 3, genital systemi; 4, genital atrium with partial eversion of the hermaphroditic dutt; 5, genital atrium with partial eversion of the hermaphroditic vesicle; 6, genital pore, lateral view showing lappets anterior and posterior to pore. Scale lines: Figs 1, 2: 100 mm ; Figs 3-6: 0.1 mm . Legend: c, cirfus; ga, genital atrium; hd, hermaphroditic duct; hv, hermaphroditic vesicle; isv, internal seminal vesiele; \mathbf{l}, lappet; v_{s} vagina.
vagnalis $3.35-5.05$ (3.82) mm, shealhw coiled. Bulths 12 to 15 times longer tban wide, 3.57-5.72 (4.74) min by $0.28-0.38$ (0.31) mom to diameter: prebulbar organs absent; retractap muscle attached at anterior end of bulb; pars postbulbesa absent. Scolex not sharply delineatat from strobila, merging intur neck.
Armature: poeciloacanthous, with a chainette of two fuws of large paired hooks on middle of external face in metabasal regiont; principal rows alternate, forming asceriding half spirats beginning on internal face; distinctive basal armature present; ro basal swelling hooks hollow Tentacle diamerer 130-170 (160). Basal armature: about eight ascending balf spiral rows of small hooks on cach side of external surface, rows alternate. Median, thook-free area present on internal surface of base, tapering toward metabasal region. Hooks $1\left(t^{\prime}\right)$ of proximat four rows of basal armature large, falciform with broad transverse bases; hooks $1\left(1^{\prime}\right)$ of basal rows 2-3 largest, 150-216 (184) long, base $44-90$ (62); hooks 2 (2') also large, recurved; Jemaining hooks small, spiniform, opposing rows meet to form inverted- Y formations on external face; spiniform hooks of rows four-six larger than more distal or proximal nows. Basal armature merges gradually into metabasal armalure. Metabasal armature: ascending sows with seven hooks per half spiral. Hooks $1\left(1^{\prime}\right)$ widely separated, rosethorn shaped, length 126-160 (149), base 76-102 (93), smaller near base of tentack: hooks 2(2) large, falciform, length $110-142(136)$, base $50-74$ (67); hooks 3(3') slender, faiciform, length $130-150$ (136), base 32-50 (40); hooks 4(4) slender, falciform, lenglh 110-130 (124), base 20-30 (24). Hooks 5(5 ${ }^{\prime}$)$7(7)$) spiniform, forming stiad, offset at oblique angle and slightly posterior to hooks $A\left(4^{\prime}\right)$; hooks $5\left(5^{\prime}\right)$, length $88-100$ (93), base 24-32 (26); hooks $6(6), 82-110$ (94) long, base 18-26 (24), hooks $7\left(7^{\prime}\right)$ 104-120 (112) long, base 18-24 (21). Hooks 8 (8) and $9(9)$ widely separated from hooks $7\left(7^{\prime \prime}\right)$ forming alternatc pairs in chaimette, each pair opposite a single principal row: Hooks $8\left(8^{\prime}\right)$ and $9\left(9^{\prime}\right)$ spiniPoran, similar to hrooks $5\left(5^{\prime}\right)-7\left(7^{\prime}\right)$ of principal rows: books 888), 72-112 (99) long, base 20-26 (23): hooks $9(9)$ smaller, 68-90 (73) long, base $16-28$ (22).

Segments appear $10-1.5 \mathrm{~mm}$ posterior to scoles, initially segments very nanow, becoming elongated, craspedote; mature segments $1.76-2.57(2,10) \mathrm{mm}$ by 0.89-1.41 (1.18) mm. Testes numerous, $50-60$ (50) in diameter, arranged in layers, occupying entire medulla anterior to hermaphroditic sac, traversing dorsal osmoregulatory canals but not ventral nair of osmoregulatory cantals; testes absent postcrion to hermaphroditic sac. Vas deferens greally coiled,
distended, occupying macto of available space between ivary and proximal pole of hermaphtoditic sac, penctrating sac from anieriur side Hermaphroditie sact, $520-700$ (626) by $250-390$ (310). pyiform. thick-watled, proximal pole deviated anteriorly; contains crescentic internal seminal vesicle and coiled cirrus armed with tiny, aciculate spines. Cirrus joins thick-walled, corrugated, hermaphroditic vesicle armed with prominert sagittate spines. Hermaphroditic vesicle joins genital atrium through shorl, musculat, cversible hermaphroditic sanal. Genital pore marginal, itregularly alternate; genital atrium deep, situated in posterior $3 / 3$ of segment, 68-71\% of segment length from anterior margin, surrounded anteriorly and posterionly by two large tleshy semi-lunar lappets, Ovary tetralobed in crosssection, set forwatd from posterion margin of segment, lobes subequal, $130-250(170)$ by $210-290$ (230). Mehlis' gland large, abeut 280 in diameter, postowarizo. Vagina thick-walled, coited, ascending from Mehlis" gland on poral side of vas deferens to penetrate posterior wall of hermaphroditic sac and join hermaphroditic vesicte. Scminal receptable absent. Uterus simple, median, walls irregularly lobulate, terminating near anterior extremity of segment. Preformed uterine pore almosi mid-way berpeen genital pore and anterior margin of segment, Vitellaria follicular, crecumcortical, filline postovarian space, surrounding all internal oreans excepe most anterior testes. Eggs ovsid. pate in colour. Longitudinal osmoregulatory carnals paired. ventral canals with iransverse commissure at posteriur margin of segment; dorsal canal mediat to ventral canals.

Material exammed: 11 specimens from spiral valve of Stegosionm foscialum (Hermann 1783), Balgal, Qla, 14.ix.1985, coll. B. G. Robertson (S2771); 1 specimen from Chiloscyl/ium punctotum Mucles \& Henle, 1841, Batgal, Qld, 17.ix,19k5, woll. B. C. Robertson (S2772).

Discussion

Southwell (1929) synonymised Tetrarhyncthus macroporus and T. antundafer under the conibination Tentacularia macropora, having examined at range of specimens from different host species, including the type host of 7 : apoandalei, Shipley \& Hornell's deseription (1906) of Terrartynchus maceoporis was based on specimens from Himam tura uarnak (Forsskal, 1775) (Syn. Trpon uarnak). The whereabouts of their specimens is unknown, and no specimens have since been tectwered from this hast. Their description of the species is brief. and as Southwell (1929) poimed out, differs fittle from that of T amancialei, Southwell (1929) considered the difference between the two specics, namely the presence or absence of a longirudinal

Figs 7-11. Tentacular armature of Hornelliella macropora (Shipley \& Hornell). 7, internal surface, metabasal region; 8 , external surface, basal rcgion; 9, hothridial surface, basal region; 10, internal surface, basal region; 11, profiles of hooks $1\left(1^{\prime}\right)$ to $9(9)$. Scale lines: 0.1 mm ; figs $7-10$ same scate.
division ut he bothridium, to be duc to intraspecific variation, and noted that contracted specimens are more likely to have a medium sub-division of the bothridia. Soalhweil: (1929) conclusions are considered justified since if specimens ate examined unstained using incident light, there is a promment, median longitudinal ridge in each bothridium, which becomes wirtually invisible when the speciments are cleared, Hornen (1912) also stated that the length of "proboscis hooks" differed berween the Iwo species, though no measurements were given in either of the original descriptions. Marked differerices occur in hook size and shape on a single tentacle, and hence such comparisons are useless If the posilion of the books being compared is not clearty specified.

Homell's (1912) specimens of Ti annandalei were taken from Siegostoma fasciatum (Hermann, 1783) (syn. S. tigrimum (Gmelin, 1789)), as were those of Yamagut (1954) and the new specitnens described herein. The material examined by Southwell (1929) moluded specimens from S. fasciatum lrom Sii Lanka (BMNH 1977 11.14,36) as well as specimens from Guleveerdo cuvier (Peron \& Le Sueur, 1822) (syn. Gi urctions (Faber, 1829) and G. tigrinus Mucler \& Heude, 1839) from Sri Lanka (BMNH 1977.11.14 37-15) and specimens from a host idertified on the label simply as Trygon sp. (BMNH 1977.11.14.9 and 1977.11.14.21-24) but identilied in the text of his paper as Dasybamss sp. All specimens clearly belong to a single specjes, with a wide host range. We therefore support Southwell's [1929) conclusion that T, macroporus and T. annundafei are conspecific though material from Himantura warnak is needed to confirm this view. Yamaguti (1954) appean to have overlooked this synonymy In his redescription of T. annandalei, and hence the correct combination for his now genus becomes Hornelliella macropora (Shipley \& Hornell, 1906) cornb nov (syn. H. annandalei (Hornell, 1912) Yamaguti, 1954).
Hewrelfiella palasoorahi Zatdi \& Khan, 1976 is the only wither nominal member of the genus. The species was said to differ from H. macropona only in the size of the cirrus sat (Zaidi \& Khan 1976). However, the description is very poor and it is clear from the drixings that it does not belong to the geribs Forneliellar tos systematic position cannot be determined and it is considered ficertae sedis.

The description giten herein conirms most of Yamaguti's (1954) obseryations, except For the single seminal vesicle which appears, from his description, to be external to the cirrus sac, but which in fact, is inlernal (see Fig. 3).

The armature, described here for the first time. presente several unique features. The large fadciform hooks of the basal annature are similar to species
of Gymnorkynchus Rudolphi, 1819 and Molicold (Dollfus, 1935). Also, the external surface of the metabasal armature bears what we have described ys a double chainette of hooks which are similar in form to those of the principal rows. The hooks of the chainette are well separated from and opposite to the alcernating principal rows as oecurs in genera such as Lacistorhymehus Pinlner, 1913 and Calliferrarhynchus Pintner, 1931. All of the hooks are hollow and are not accompanited by satelfite hooks or by inteccalating rows of hooks. Although a poeciloacanitous type of hook artangement fiting the orderly arrangement found in a chainett, ir could also be interpreted as a "hanid" of hooks such as is found on the external surface of the tentacles of species Molkold and Grillotia (see Dolifus 1942). However, such bands of hooks in poeciloacanth trypanorhynchs freguently show little or no orderly linear arrangement of their efements. and the hooks may vary both in size and in form. We therefore prefer to consider the hook arrangement seen in Morrelliello as a modified cbainette.

A double chainelle with hooks in a tandem position, occurs in Lucistorhynchus and Eielacistoshynchus Subhapradira, 1957 (Lacistorhynchidac). in Callizesrarhynchus (Dasyrhynchidae), Gymnofiynchius (Gymnorhynchidae) and some species of Dasyrhynchus Pintner, 1928 (Dasyrbynchidae). Simple chainettes with hooks in a single row oceur in FYoriceps Cuvier, 1817 (Dasythyyctridae), Holysiorhynchus Pintner, 1913 (Plerobothriidae), Mixiodigma Dailey \& Vogelbein, 1982 (Mixodgmalidae) and in sqme species of Dasyrfynchous. No genus described to date has a chainette composed of pairs of hooks in tandem, and the structure seen in Hornelliella is unique among the Trypanorhyncha
Yamaguti (1954) erected a new farnily ard genus for the species based primarily on the presence of a unique, bermaphroditic vesicle, which the did not illustrate. Yamagati's description is corret, and both cierus and vagina join a large, thick-walled yesicle armed with sagitate spines. The vesicle leads, via a highly muscular hermaphroditic duct, to the genital atrium, A fully everted cirrus was not observed but the hermaphroditic duct appoars to be eversible and the vesicte is capable of beling. partially proteuded through the duct, with the characteristic saguate spines being visible on the external surface (Fig, 5). Although the vesicle appears to be unique, a minion of mate and fermale duets within the "cirrus sac" (=bermaphroditio pouch of Yamaguti (1954)) oceurs in Lacis(orfynchus (see Dolltis 1942) but in the datter case there is no armed vesicle, merely a simple hermaphoditic duct referred to as the "gential atrium* by Dollfus (1942) because the "arrium" is
everted first, followed by the cirrus. A similar mechanism of evagination may operate in H. macropnra. We consider the terminology used by Yanaguti (1954) of hermaphroditic duct and hermaphroditic vesicle preferable to that used by Dollfus (1942) for Lacistorhynchus tenuls.

Yamaguti (1954) erected the family Hornelliellidae based on the presence of an hermaphroditic vesicle, testes anterior to the "cirrus sac", presence of paired lappers around the genital alrium, a series of muscular rings in the tentacle sheaths and circumcortical vitelline follicles which formed a band postcrior to the ovary. Of these characters, the muscular rings of the tentacle shcaths were not visiblc in our specimens, and we doubt whether such precise distribution of the testes and vitellaria will prove to be family characters. However, the armature is unique in that each pair of hooks in the chainette is contributed by a single, principal row, in alternating fashion. Furthermore, the hooks of the chainette are similar in shape to those of the principal rows instead of bcing markedly different.

On the basis of its armature and the hermaphroditic vesicle we consider that the Hornelliellidac is valid and that it is most closely related to the pocciloacanthous families Lacistorhynchidae

Guiart, 1927 and Gymnorhynchidac Dollfus, 1935. A redefinition is given below.

Hornelliellidae Yamaguti, 1954. Hornelliella Vamaguti, 1954. Scolex celongatc, acraspedote; two oval bothridia each with median longitudinal ridge. Metabasal armature poeciloacanthous, chainette of two rows of large paired hooks; intercalary hooks absent; distinctive basal armature present; no basal swelling. Tentacle sheaths coiled; prebulbar organ absent; retractor muscle originates in anterior third of hulb, Pars postbulbosa absent. Genital pores marginal, irregularly alternate. Testes numerous, scattcred, anterior to genital pore; internal seminal vesicle present; male and female ducts unite to form armed hermaphroditic vesicle; genilal pore surrounded by lappets. Vitellaria follicular, circumcortícal, pre and post-ovarian. Uterus simple, median, tubular; preformed uterine pore present. Patasites of sharks and rays.

Acknowledgments

Thanks are due to B. G. Robertson for collecting the specimens, and to Dr D. Gibson (BMNH) for lending spacimens.

This project was supported financially by the Australian Biological Resources Survey.

References

Dotifus, R. P. (1942) Etudes critiques sur les Têtrarhynques du Muséum de Paris. Arch. mus. nat, Hist. nat, Paris, 6° sér. 19, 1-466.
Hornell, I. (1912) New cestodes from Indian fishes. Rec. Ind. Mus. 7. 198-204, plates IX, X.
SCOUTHWELL, 'T. (1929) A monograpls of cestodes of the
order Trypanorhyncha from Ceylon and India, Part 1, Spolia Zeyt. 15, 169-3t2.
Yamaguta, S. (1954) Parasitic worms mainly from Celebes. Part 6. Cestoder of fishes, Acta Med. Okayama 8, 353-374, plates 1, II.
Zaidl. D. A. \& Kban, D. (1976) Cestodes of fishes from Pakistan. Biologia 22(2), 157-179.

[^0]: * Department of Biolagy, Southeastern Massachusents University, North Dartmouth, Massachusetts, 02747. U.S.A.

 1 Central Veterinary Laboratory, South Ausirabian Depariment of Agricalfure, Instilpte of Medical and Veterinary Science, Frome Road, Adelaide, S. Aush, 5000.

